goodin & Associates, Inc.

confidential Information

Goodin & Associates, Inc

Glide 3.0 Conformance :

 Test Plan

Prepared for:

3Dfx Interactive

0Introduction

Goals
0
Non-Goals
0
Implementation
0
Test Groups
0
Development Plan
0

Introduction

Based on the experience transitioning games from the Voodoo to Voodoo2 architecture, two classes of potential problems were identified. The first was improper Glide programming. An example of this was rendering during LFB access. This was illegal in Glide but happened to work with the Voodoo hardware. This did not work with Voodoo 2, causing some games to fail on the new hardware.

The second class of problems involves hardware incompatibilities that could cause significant differences in rendered images between hardware architectures. The conformance test suite is being developed to address this class of problems. The conformance test suite will exercise all the legal functionality of Glide, singly and in combination, to verify that the Glide generated images will appear sufficiently similar from generation to generation of hardware.

Goals

The primary goal of the conformance suite is to guarantee that applications written in legal Glide 3.0 commands will present the same appearance across multiple platforms.

A secondary goal is to provide multiple “levels” of testing. The first level is a non-random diagnostic featuring simple examples of the functionality. This level is targeted at basic diagnostics. The second level is pseudo-random testing of the basic functionality. This is designed to ferret out any remaining corner case discrepancies. The third level is pseudo-random testing of combined features. This is designed to uncover any cross compatibility problems (i.e. fog does not work with textures, etc.). The final level is image based testing. The Glide rendering commands to produce key images from popular or challenging games are captured by a glide wrapper and are played back by the test.

A third goal is to provide, where it doesn’t compromise the first two goals, a test suite for SST2 verification. To address this, the first level of testing will be of the level of complexity appropriate for reasonable length testing in Verilog simulation. This testing, however, will only cover the Glide functionality on the SST2 hardware. Extending Glide to support direct register access to hardware can extend the test framework to address direct hardware stimulus of the SST2. This extended testing of non-Glide functionality is beyond the scope of this project.

Non-Goals

The first area not addressed by the Glide 3.0 conformance test is out of range values and illegal operations.

The second non-goal is to provide hardware test coverage for any specific hardware platform. The goal is to provide full functional coverage for Glide. Whether full Glide coverage translates into full hardware coverage on a given platform is difficult to determine and very hardware dependent. Hardware projects can use the conformance tests as a first cut at hardware verification. Additional tests will need to be written to provide reasonable hardware test coverage on a per hardware project basis.

Implementation

The test implementation is based on a series of tests producing output images of hardware auxiliary and frame buffers. For the tests to work, it is presumed that simple LFB read functionality and basic hardware setup is functional and correct. This functionality is key to capture the test images. All images are captured as 24 bit Windows bitmaps. This allows easy viewing on multiple platforms and provides sufficient color resolution to accommodate current and future 24 bit color platforms.

The test images will then be compared against a set of “golden” images. In the initial implementation, the golden images will be derived for either another “control” hardware platform (i.e. Voodoo) or from previous runs of the test suite on the target platform. Eventually, a software renderer should be developed to generate golden images based on some absolute rasterization and functionality specification.

The test images will be compared by inexact means. For example, if a color dithering algorithm is subtly different between two hardware platforms but both produce acceptable images, the compare tool should be able to deal with the dithering discrepancies and still pronounce the images a match. Different matching strategies may be used for different sections of the test. For rasterization, a matching strategy that ignores color differences and just evaluates covered pixels would be appropriate. For interpolation, exact pixel coverage may not be required as long as each covbered pixel has been interpolated correctly.

Test Template

The test template is common code used by each test. It sets up access to the hardware, sets display modes and auxiliary buffers and captures regions of the frame buffer or auxiliary buffers to an image file. The template also sets the hardware in a consistent know state prior to running any test code. This is designed to insulate each test from inheriting state from other tests when run in series.

The template is implemented as a C “main” function that is linked with each test routine. The test routines themselves are implemented as multiple instances of the same test function (“do_conform”) called by the template.

The template also calls an initial mode setup function (“set_mode”) in the test routine to initialize the frame buffer(s) to the appropriate state prior to the execution of the test.

Test Routines

The test routines contain the test specific functionality which, when linked to the test template, produces the tests themselves. The tests, whenever possible, should call the utility routines supplied by the template rather than re-implement the functionality within the test routine.

An example of this would be in the generation of random numbers. If the test writer generates random numbers within the test routine itself, the command line arguments to the test template which control random number generation would be ignored. This could produce a test routine that was not repeatable.

The test routine itself is a single C module containing two main routines: “set_mode” and “do_conform”. Each routine is passed a pointer to global state information maintained by the test template. Part of this state is a copy of the command line arguments to the test template that have not been parsed by the template itself. This allows each test to process test specific command line arguments.

Based on the command line arguments, the test template will determine an appropriate initial state. This state is then passed to the test routine via “set_mode”. The state can be modified by the test routine is set mode. After it calls “set_mode”, the template will re-examine its initial state and initialize the hardware appropriately.

“Set_mode” can also be used to examine the passed state and determine if the resources exist to execute the test routine. An example might be running an anisotropic texturing test on hardware that does not support anisotropic texturing. This allows the test to exit gracefully instead of simply failing.

“Do_conform” contains the bulk of the test specific code.

Image Tools

The primary image tool is the interactive image compare utility. This allows the operator to load the target image and golden image and compare pixel by pixel. The tool features zoom, display difference, etc. The tool is based in the WIN32 GUI.

An automated image match tool is also provided. This tool is used mainly to automate regression for hardware specific golden images.

A number of inexact image matching tools will be needed to automate conformance. At least two tools, which have been mentioned earlier, will be needed. The first is the rasterization comparison tool. This tool ignores color variation and only looks for pixel coverage. The second tool is a color match tool that ignores rasterization and possibly dithering variations. Other inexact matching tools may need to be developed during the course of the project to provide fully automated testing beyond that provided by the exact match tool and hardware specific golden images.

Glide Wrapper

The Glide wrapper is used to extract all the Glide commands used to produce a selected frame during game execution. This is the primary method of extracting data for the image based conformance tests.

The Glide wrapper is implemented as a WIN32 DLL with the same entry points as the Glide library. The wrapper DLL will replace the Glide DLL for the system. The Glide DLL will be copied to a local directory. When the wrapper DLL initializes, it will load the Glide DLL. Every call in the wrapper will save the associated parameter data to a log file and then call actual Glide routine in the Glide DLL. The data in this log file will then be used to generate the image test code.

Test Groups

The tests are broken into a number of groups loosely associated with different hardware features. In addition to the independent feature testing, a group is defined to test combinations of hardware features and test using actual frame data from existing games.

Rasterization Tests

The rasterization tests render primitives against a black background with a constant color. This is done to decouple rasterization from interpolation. The simple level tests will render a few fixed orientations of each primitive. The pseudo-random tests will generate random primitives with random vertices. Initially, the pseudo-random tests will compare against golden images generated by another hardware implementation. Eventually, the images will be compared against golden images generated by the sample rasterizer. These tests also cover primitive antialiasing.

Interpolation Tests

The interpolation tests also render primitives with different attribute values at each vertex. All possible attribute values are tested, including multiple texture coordinates for multitexture. The simple level tests will generate a few fixed orientations of each primitive. The pseudo-random tests will vary both attribute value and vertex position. The image comparison will compare the interpolated value of the attribute under test for each valid pixel. Rasterization issues will be explicitly ignored during this testing.

Color Combine Operations

For the simple test, a single primitive is rendered with a full color variation. Each color combine operator is performed on this primitive and verified. The pseudo-random test varies primitive type, primitive vertex data, and color combine operator. The color combine operations requiring other sources (such as texture color) will be tested in the appropriate section.

Alpha Test Operations

For the simple test, a single primitive is rendered with a full alpha variation. Each alpha test operator is performed on this primitive with predefined test values and verified. The pseudo-random test varies primitive type, primitive vertex data, alpha test operator and alpha test value.

Alpha Combine Operations

For the simple test, a single primitive is rendered with a full alpha variation. Each alpha combine operator is performed on this primitive and verified. The pseudo-random test varies primitive type, primitive vertex data, and alpha combine operator. The color combine operations requiring alpha sources will be tested in this section.

Texture Combine Operations

For the simple test, a simple texture is loaded in texture memory. Then, a single primitive is rendered with a full texture coordinate variation. Each texture combine operator is performed on this primitive and verified. The pseudo-random test varies primitive type, primitive vertex data, and texture combine operator. The color combine operations requiring texture sources will be tested in this section. This section focuses primarily on texture interpolation issues in relation to texture combine.

Texture Lookup Operations

The simple texture lookup tests load textures of various sizes and aspect ratios. Only one texture is loaded at a time. Then, a single primitive is rendered with a full texture coordinate variation. It also tests that texturing functions correctly to the maximum range of valid texture coordinates. This section also has the side effect of verifying texture load. This section focuses primarily on texture operations such as LOD, MIP mapping, different filtering modes and wrapping.

Fog Tests

For the simple fog tests, a single primitive the size of the screen is rendered with depth values ranging from near to far. All fog modes with multiple fog tables are applied to this primitive and verified. There is no pseudo-random testing related just to fog. Pseudo-random fog testing is handled in conjunction with other operations in the combined tests.

Linear Frame Buffer Access Tests

The simple linear frames buffer tests verifies the basic ability to read and write frame buffers of all types. In addition, all side effects are tested (e.g. write with constant Z). The pseudo-random tests will vary read and write data, data length, target frame buffer and LFB modes.

Glide Initialization Tests

This section primarily tests the functionality of the grSst* routines for consistency across hardware platforms. All tests are simple and non-random.

Default Tests

This section tests that the default state of Glide after initialization is consistent and matches the definition across all hardware platforms. All tests are simple and non-random.

Clear Tests

This section tests the ability of Glide to clear any and all defined frame buffers to a specified value. All tests are simple and non-random.

Combined Tests

There are no simple tests in this section. All tests are pseudo-random and pick a random combination of Glide rasterization state and primitive descriptions. This testing will be difficult to accomplish without a fully capable sample rasterizer. This section could also grow to be the largest test set in the suite. All though quite complex and complicated, I believe that this section will uncover most of the conformance problems.

Image Based Tests

The image based tests rely on rendering data extracted from real applications by using the Glide wrapper. Each test replays all the data used to generate one frame of the target application and capture the result as a Windows bitmap image.

Global Scene Antialiasing

The global scene antialiasing tests will assume that some form of single pass fragment or edge method is used to generate the image. This testing methodology should extend equally well to multipass blending or supersampling methodologies. The evaluation of image correctness in this case will be extremely difficult to automate. The verification process will probably involve manual evaluation of the resultant images and generation of hardware specific golden images. The simple tests will be based on simple edge combinations. The complex tests will probably be based on data extracted from the image rendering tests.

Development Plan

Phase I – Utility

Implement the test template and bitmap comparison tools. The Glide wrapper will not be implemented at this time.

Time estimate: 2 weeks.

Phase II – Simple Testing

Implement the simple versions of all categories that have simple tests. Test groups will be implemented in the following order:

Linear Frame Buffer Access Tests - .5 week

Clear Tests - .5 week

Rasterization Tests – 1 week

Interpolation Tests – 1.5 weeks

Color Combine Operations – 1 weeks

Alpha Test Operations - .5 week

Alpha Combine Operations – 1 week

Texture Combine Operations – 1 week

Texture Lookup Operations - 2 weeks

Fog Tests - .5 week

Glide Initialization Tests - .5 week

Default Tests - .5 week

Phase III – Pseudo-random Testing

Implement the pseudo-random tests to compliment the simple tests in Phase II. Test groups will be implemented in the following order:

Linear Frame Buffer Access Tests – .5 week

Clear Tests - .5 week

Rasterization Tests – 2 weeks

Interpolation Tests – 2 weeks

Color Combine Operations – 1 week

Alpha Test Operations – 1 week

Alpha Combine Operations – 2 weeks

Texture Combine Operations – 2 weeks

Texture Lookup Operations – 4 weeks

Phase IV – Combined Testing

Implement tests combining Glide functionally tested separately (e.g. fogged texturing). Since the combinations of attributes are almost limitless, this testing will be bounded by time allocated to the task. This can also proceed in parallel with the image based testing.

Phase V – Image Based Tests

Select sample frames from applications considered either significant or interesting and capture the data used to create the frame. The Glide wrapper will have to be implemented in this phase. The captured data will then be used to generate tests to render the target frames.

Phase VI – Global Scene Antialiasing

This task will be put off to the end due to the difficulty of coming up with a hardware independent method of automatic verification. These tests will probably be based on the scenes captured for image rendering.

Phase VII – Sample Rasterizer and fully automated conformance

Develop a sample rasterizer that will serve as a reference definition for Glide functionality. This rasterizer can be used to generate golden image files for subsequent conformance testing.

3
04/20/99
10
Version 1.0

